Examining the Capability of Supervised Machine Learning Classifiers in Extracting Flooded Areas from Landsat TM Imagery: A Case Study from a Mediterranean Flood

نویسندگان

  • Gareth Ireland
  • Michele Volpi
  • George P. Petropoulos
چکیده

This study explored the capability of Support Vector Machines (SVMs) and regularised kernel Fisher’s discriminant analysis (rkFDA) machine learning supervised classifiers in extracting flooded area from optical Landsat TM imagery. The ability of both techniques was evaluated using a case study of a riverine flood event in 2010 in a heterogeneous Mediterranean region, for which TM imagery acquired shortly after the flood event was available. For the two classifiers, both linear and non-linear (kernel) versions were utilised in their implementation. The ability of the different classifiers to map the flooded area extent was assessed on the basis of classification accuracy assessment metrics. Results showed that rkFDA outperformed SVMs in terms of accurate flooded pixels detection, also producing fewer missed detections of the flooded area. Yet, SVMs showed less false flooded area detections. Overall, the non-linear rkFDA classification method was the more accurate of the two techniques (OA = 96.23%, K = 0.877). Both methods outperformed the standard Normalized Difference Water Index (NDWI) thresholding (OA = 94.63, K = 0.818) by roughly 0.06 K points. Although overall accuracy results for the rkFDA and SVMs classifications only showed a somewhat minor improvement on the overall accuracy exhibited by the NDWI thresholding, notably both classifiers considerably outperformed the thresholding algorithm in other specific accuracy measures (e.g. producer accuracy for the “not flooded” class was ~10.5% less accurate for OPEN ACCESS Remote Sens. 2015, 7 3373 the NDWI thresholding algorithm in comparison to the classifiers, and average per-class accuracy was ~5% less accurate than the machine learning models). This study provides evidence of the successful application of supervised machine learning for classifying flooded areas in Landsat imagery, where few studies so far exist in this direction. Considering that Landsat data is open access and has global coverage, the results of this study offers important information towards exploring the possibilities of the use of such data to map other significant flood events from space in an economically viable way.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long-Term Monitoring of the Flooding Regime and Hydroperiod of Doñana Marshes with Landsat Time Series (1974-2014)

This paper presents a semi-automatic procedure to discriminate seasonally flooded areas in the shallow temporary marshes of Doñana National Park (SW Spain) by using a radiommetrically normalized long time series of Landsat MSS, TM, and ETM+ images (1974–2014). Extensive field campaigns for ground truth data retrieval were carried out simultaneous to Landsat overpasses. Ground truth was used as ...

متن کامل

A Comparison of Spectral Angle Mapper and Artificial Neural Network Classifiers Combined with Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping

Satellite remote sensing, with its unique synoptic coverage capabilities, can provide accurate and immediately valuable information on fire analysis and post-fire assessment, including estimation of burnt areas. In this study the potential for burnt area mapping of the combined use of Artificial Neural Network (ANN) and Spectral Angle Mapper (SAM) classifiers with Landsat TM satellite imagery w...

متن کامل

Flood Hazard Mapping by Satellite Images and Srtm Dem in the Vu Gia – Thu Bon Alluvial Plain, Central Vietnam

The objective of this study is to generate a flood hazard map based on geomorphologic approach employing Shuttle Radar Topographic Mission (SRTM) DEM and satellite image data (ASTER and LANDSAT). Supervised classification of satellite images is implemented to characterize land cover types. Moreover, the Modified Normalized Difference Water Index (MNDWI) is undertaken to identify moist surface o...

متن کامل

Advanced machine learning methods for wind erosion monitoring in southern Iran

Extended abstract Introduction Wind erosion is one the most important factors of land degradation in the arid and semi-arid areas and it is one the most serious environmental problems in the world. In Fars province, 17 cities are prone to wind erosion and are considered as critical zones of wind erosion. One of the most important factors in soil wind erosion is land use/cover change. T...

متن کامل

Random Forest Algorithm for Land Cover Classification

Since the launch of the first land observation satellite Landsat-1 in 1972, many machine learning algorithms have been used to classify pixels in Thematic Mapper (TM) imagery. Classification methods range from parametric supervised classification algorithms such as maximum likelihood, unsupervised algorithms such as ISODAT and k-means clustering to machine learning algorithms such as artificial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015